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Rapidly Converging Spectral-Domain Analysis of
Rectangularly Shielded Layered Microstrip Lines

John L. Tsalamengas and George Fikioris, Member, IEEE

Abstract—A moment-method-oriented direct integral-equation
technique is presented for the exact analysis of rectangularly
shielded layered microstrip lines. This technique retains the
simplicity of conventional moment methods while optimizing
them by recasting all matrix elements into rapidly converging
series. Filling up the matrix requires no numerical integration.
The proposed algorithms yield highly accurate results both for the
modal currents and propagation constants.

Index Terms—Analytical methods, microstrip lines, moment
methods, spectral-domain analysis.

I. INTRODUCTION

SPECTRAL-DOMAIN analysis (SDA) has been widely
used for the investigation of microstrip structures [1]–[4].

Its remarkable simplicity in conjunction with the variational
nature of the moment method (MoM) enables unsophisticated
computation of the propagation constants with reasonable
accuracy using a few basis functions. The required CPU time,
however, rises extremely rapidly with accuracy. This occurs
because it is necessary to compute several series that converge
very slowly.

To overcome the problem of slow convergence of spectral se-
ries, several techniques have been used in the past. One such
efficient technique is described in [5] and [6]. Accelerated ver-
sions of full-wave SDA are also developed in [7]–[9]. Finally,
in [10], an efficient quasi-static analysis is presented, which can
be used for speeding up full-wave computations as well. For
the above reasons, the method of dual series equations (DSEs)
[11] has been also used as a powerful alternative to the SDA; in
particular, it can be used to obtain the characteristics of higher
order modes [12]–[14]. In comparison with SDA, the method of
the DSE is, however, rather multistage and cumbersome. More
recently, a technique has been reported [15] for the extremely
accurate SDA of generalized finlines, which recasts all spec-
tral series involved into very rapidly convergent ones while re-
taining the simplicity of the conventional MoM. Although the
techniques in [15] are unconventional, they yield very good re-
sults.

As pointed out in [6] and corroborated in [15] as well, the
main difficulty with SDA is the accurate computation of the ma-
trix elements and not matrix size. Motivated from this remark,
the purpose of this paper is to extend the method of [15] to the
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case of a rectangularly shielded generalized microstrip line. This
is carried out in Sections II–IV and, as in [15], leads to rapidly
converging expressions for all matrix elements. As a result, ex-
tremely accurate results are obtainable with low computational
cost as we demonstrate in Section V.

Planar microstrip structures have been studied for years, and
the studies have led to computer programs (see, e.g., [16]) ca-
pable of providing results with sufficient accuracy for ordinary
engineering applications. The aforementioned studies, and the
ensuing computer programs, are general in the sense that they
apply to a variety of geometries. The analysis herein only con-
cerns the specific geometries mentioned above. However, as a
result of the specialized nature of our analysis, we obtain results
of very high accuracy using smaller-than-usual matrices. Our
lower computational costs may be useful, for example, in dis-
continuity analysis problems, where the computation of many
modes is required, or in optimization problems, where final de-
signs are produced after a great number of candidate structures
have been analyzed and compared. Furthermore, our results can
also be used as benchmark tests for general-purpose computer
programs. The present study, therefore, is not intended to com-
pete with analyses leading to general-purpose computer pro-
grams and can, in fact, test and complement such programs.

II. FORMULATION

Shown in Fig. 1 is the geometry of a generalized microstrip
line. The th layer is characterized by the scalar constants , ,
and . The strip, of width 2 , is located at the in-
terface ( ) between layers (1) and ( 1). The two outmost
regions can be occupied by a perfect electric conductor (PEC),
a perfect magnetic conductor (PMC), or a dielectric; these out-
most regions extend to infinity and are labeled ( ) and
( ).

Assuming propagation in the -direction and using the im-
mittance approach [2], [17], the surface current density on the
strip is found to satisfy the
system of integral equations (1) and (2), shown at the bottom of
the following page. Here, we have adopted a notation similar to
[15]: denotes the -axis interval
occupied by the strip, is the Neumann’s factor,
and

(3)

The quantities and in (1) and (2) are given by

(4)
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Fig. 1. Geometry of the problem.

where are evaluated recursively down-
wards\upwards from

(5)

with starting values , , re-
spectively, where

(6)

(7)

III. DISCRETIZATION OF (1) AND (2) BY CONVENTIONAL SDA

We change variables , (
) and expand

(8)

where and are the Chebyshev polynomials. In accor-
dance with conventional MoM, we insert from (8) into (1) and
(2) and take the inner product with and with

( ) to obtain

(9a)

(9b)

The matrix elements are given by

(10a)

(10b)

(10c)

where

even

odd.

(11)

In (11), is the Bessel function of order . It is readily
verified that all series in (10) converge rather slowly, as .
As a result, it is extremely difficult to achieve high accuracy
using (10). In the following section, these difficulties are faced
head on by recasting all matrix elements into rapidly converging
series following methods similar to those in [15] and [18].

(1)

(2)
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IV. IMPROVED SDA

Let

(12)

then

(13)

decay very strongly (exponentially) as . Using (12), one
obtains

(14)

where

(15)

decay exponentially with increasing . In view of (14), we have
the result

(16)
where

(17)

As seen, the computation of ( )
via (10) involves very strongly (exponentially) converging se-
ries solely and is, thus, very efficient. Therefore, our main ob-
jective henceforth will be the efficient evaluation of the quanti-
ties ( ) of (17),
whose series expressions (10) continue to converge very slowly
(as ).

A. Acceleration of ( )

After some algebraic manipulations, one may obtain the re-
sults

(18)

(19)

(20)

where

(21)

(22)

(23)

In addition, one can verify that

(24)

where

(25)

(26)

As seen, decay as for large values of .
Using these results, can be written as the sum of two

terms

(27)

The first term in (27) involves , which is given by

(28a)

(28b)

(28c)

We observe that all series in (28) converge as , i.e., very
rapidly. Therefore, the computation of via (28) is very
efficient. Note also that the rate of convergence of these series
can be easily improved to any order, if desired, by extracting
high-order asymptotic terms from and .

The second term in (27) involves . If , ,
, and denote the series

(29a)

(29b)
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(29c)

(29d)

then the quantities in (27) are given by

(30a)

(30b)

(30c)

The first and third series in (29) converge as (i.e., very
slowly), the second and fourth as . All these series can be ac-
celerated to any order by the techniques described below, which
resemble the techniques of [18].

B. Acceleration of and

We rewrite and as

(31)

(32)

where the th order asymptotic expressions , of

, and are given by

(33)
in which

(34)

Exponentially converging series expressions for ,
, and are given in [18]. The quantities

[ ] and [ ] in (31) and (32) are

given by series that converge, respectively, as and
, i.e., very strongly. (For instance, if we select to use

the second-order acceleration scheme ( ), then the series
convergence is and , respectively).

C. Acceleration of and

Using the relation

(35)

in conjunction with (7), we get the results

(36)

(37)

The quantity in (37) is given by the following series:

(38)

which converges as . This series can be accelerated to any
order ( ) by recasting as

(39)

where

(40)

The series for [ ] is rapidly converging, whereas
, defined by (34), can be evaluated by exponentially

converging series as outlined above.
Note: It is important to note that the basic quantities ,

defined in (34) and used in (33) and (40), are independent of the
unknown propagation constant and, therefore, need only be
evaluated once at the beginning. This feature greatly adds to the
efficiency of the algorithm.

V. NUMERICAL RESULTS AND COMPARISONS

A. Convergence Versus Matrix Size

For several matrix sizes, Table I shows the normalized prop-
agation constants of the first five modes supported by the struc-
ture of Fig. 2 for the parameter values , ,

GHz, mm, a, a,
mm, mm, and (second-order
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TABLE I
�=k OF THE FIRST FIVE MODES OF THE STRUCTURE OF FIG. 2

Fig. 2. Single-layered microstrip line.

Fig. 3. Convergence of �=k for the first mode versus N (the matrix size is
N � N ), and comparison with [14].

acceleration). As seen, the convergence of our algorithm versus
matrix size is very stable and rapid. For instance, a 6 6 ma-
trix (use of three basis functions for each of and ) suffices
in most cases to obtain an accuracy to within seven significant
figures, whereas for a 12 12 matrix, the accuracy reaches 12
significant figures.

In order to test the correctness of our algorithm, Table I also
contains results taken from [14] based on the DSE method for
20 20 and 30 30 matrices. The agreement is very good for
all modes. We further observe that, in comparison with [14], our
results reach their final values for considerably smaller matrix
sizes. Illustrative in this respect is Fig. 3, based on Table I and
on [14, Table I], which compares the rapidity of convergence
versus ( denotes the matrix size) between this work and
[14]. As seen from this figure, the values of [14] asymptotically
approach our plot, which is almost horizontal.

Fig. 4. Relative error �" =" versus the number of series terms (structure
of Fig. 2: " = 11:7, � = 1, fr = 4 GHz, a = 34:74 mm, c = 0:5 a,
2w = 3:04 mm, D = 50 mm, and D = 3:17 mm).

B. Convergence Versus the Number of Series Terms

As noted above, the proposed algorithm enables one to com-
pute all matrix elements via rapidly converging series. To illus-
trate this very important feature, we first truncate all infinite se-
ries involved by retaining only terms in each of them. In
Fig. 4, we then show the relative error versus ,
where , with

denoting the exact value of the effective di-
electric constant (see below). Here, we refer to the structure of
Fig. 2 for the parameter values , , GHz,

mm, a, mm, mm, and
mm. Six basis functions are used in each of (8).

As seen from Fig. 4, both our first- and second-order algo-
rithms (curves labeled “ ” and “ ,” respectively) yield
a rapidly decaying error with increasing . When ,
for instance, even for , the relative error
is less than 0.011 (or 1.1%). For , this error is only
1.23 10 , whereas for , it becomes 6.86 10 .
In contrast, the conventional SDA (curve labeled “CSDA”) is
seen to be very slowly converging (due to series converging as

, as we noted above).

C. Further Results

Very accurate results (to within eight figures) for the
microstrip line have been recently reported in [6]. Thus, to
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TABLE II
" FOR n = 40; 70 AND FOR SEVERAL MATRIX SIZES N �N . THE

PARAMETER VALUES ARE THE SAME AS IN FIG. 4

further test and appreciate the efficiency and accuracy of our
algorithm, Table II presents values of the effective dielectric
constant pertaining to the structure of Fig. 2 for two values
of and for several matrix sizes when the parameter
values are selected as in Fig. 4. As seen, our results coincide
with those of [6]. Of course, by further increasing , the
accuracy can be improved even more. When ,
for instance, results accurate to within 12 figures are obtained
( ).

VI. CONCLUSION

The highly accurate evaluation of the propagation constants
in rectangularly shielded generalized microstrip lines is a diffi-
cult task in the context of the conventional MoM. The difficul-
ties, which are due to the slowly convergent series in the expres-
sions for the matrix elements, have been faced head on in this
paper by recasting all matrix elements into rapidly converging
series using analytical acceleration techniques resembling those
in [15] and [18]. With the help of the algorithm proposed herein,
the MoM is optimized, while its simplicity is retained. These
new algorithms are promising alternatives to other multistage
and cumbersome methods such as the dual series technique used
in the past.
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